If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+26y-160=0
a = 1; b = 26; c = -160;
Δ = b2-4ac
Δ = 262-4·1·(-160)
Δ = 1316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1316}=\sqrt{4*329}=\sqrt{4}*\sqrt{329}=2\sqrt{329}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{329}}{2*1}=\frac{-26-2\sqrt{329}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{329}}{2*1}=\frac{-26+2\sqrt{329}}{2} $
| 7.4+3-9=6+7.4x | | 8x-20=4x+40 | | 2(3x+5)=15x+2-9x+8 | | -1/6(2x*12)=-1/3x+12 | | z-304=160 | | 7x-16=2x+19 | | 180x-72=18(10x-4) | | z-315=142 | | 2.3^x=45-3^x+1 | | 5n*5=20(4+0.25n) | | 8x-4+9x-7=18 | | 5^2x+2x=45 | | y=4(0.8)^ | | 6/64=8.25/t | | 7x+6=4x+16 | | 8x+3=13-2x | | 44=n+10 | | 1/2+1/4x=7/10 | | X^2-15x-82=0 | | 1=v/4-12 | | 0=-x^2+16x-61 | | 0.5x-22+3x-45=8-2.5x-12 | | c^2+10=0 | | m=9.25= | | 242=15-y | | u/7-1=-5 | | 133/y=12 | | 4*2^x-10*2^x+4=0 | | 3x15=2x-8 | | 1.3x=14.3 | | 3h=5=12 | | 20320-x=282 |